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Recent commercial developments in multicore processors (e.g. Tilera, Clearspeed, 
HyperX) have provided an option for high performance embedded computing that rivals the 
performance attainable with FPGA-based reconfigurable computing architectures.  
Furthermore, these processors offer more straightforward and streamlined application 
development by allowing the use of conventional programming languages and software tools 
in lieu of hardware design languages such as VHDL and Verilog.  With these advantages, 
multicore processors can significantly enhance the capabilities of future robotic space 
missions.  This paper will discuss these benefits, along with onboard processing applications 
where multicore processing can offer advantages over existing or competing approaches.  
This paper will also discuss the key artchitecural features of current commercial multicore 
processors.  In comparison to the current art, the features and advancements necessary for 
spaceflight multicore processors will be identified.  These include power reduction, radiation 
hardening, inherent fault tolerance, and support for common spacecraft bus interfaces.  
Lastly, this paper will explore how multicore processors might evolve with advances in 
electronics technology and how avionics architectures might evolve once multicore 
processors are inserted into NASA robotic spacecraft. 

I. Introduction 
obotic spacecraft, regardless of mission, generally conform to a generic architecture, which can be divided into 
the spacecraft infrastructure and the spacecraft payload. As illustrated in Fig. 1, the spacecraft “bus” provides 

the basic infrastructure of the spacecraft and consists of a mechanical structure, a power generation and distribution 
subsystem, a propulsion and attitude control subsystem (including guidance/navigation sensors), a radio 
communication subsystem, and a command and data handling subsystem (including the flight control computer, 
memory storage, and data acquisition for a suite of “housekeeping” sensors).  Attached to this bus infrastructure is 
the payload, consisting of the science and exploration instruments which are the spacecraft’s raison d’etre.  

In this paper, we examine the spacecraft computing system, which, to date, on most spacecraft, is a relatively low 
performance, but extremely high reliability computer. Its task, for the most part, has been to execute carefully 
crafted sequences provided by a team of experts on the ground that is responsible for mapping out the spacecraft’s 
minute-to-minute activities and uploading these sequences on a periodic basis via the radio communication system.  
This paradigm, however, is extremely costly, limiting in mission capabilities, and greatly reduces the potential 
science and exploration return on mission investment. In most cases, what can be done with the limited computing 
resources available in current spacecraft has been done, and we are reaching the limit of mission complexity and 
spacecraft capability achievable with standard spacecraft control computer technology. 
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Demands for onboard computing will 
be significantly increased for many future  
National Aeronautics and Space 
Administration (NASA) robotic space 
missions.  This is largely driven by the fact 
that increases in instrument sensor data 
rates are not being matched by increases in 
downlink bandwidth.  In addition, future 
mission concepts call for autonomous 
decision making which further drives 
onboard processing needs. 

Several options currently exist for 
onboard computing, offering varying levels 
of performance.  Radiation hardened 
spaceflight processors such as the BAE 
RAD750 are based on PowerPC processors 
and offer performance up to 240 MIPS[1] 
(million instructions per second) range.  
Other vendors offer multiple unhardened 
PowerPC processors with various redundancy schemes, which offer increased performance at the expense of power 
and programming complexity.  For applications requiring less performance and lower power, processors embedded 
with a System-On-a-Chip (SOC) are a viable approach.  With this approach, moderate performance processors such 
as LEON and ARM variants, or lower performance processors such as MISC, can be implemented either in radiation 
hardened application specific integrated circuits (ASICs) or field proigrammable gate arrays (FPGAs).  Applications 
for these processors are typically coded with high-level software languages, and with the exception of the lower 
performance processors operate on real-time operating systems such as VxWorks or RTEMS (Real-Time Executive 
for Multiprocessor Systems). 

For high performance onboard digital signal processing applications, processing can be implemented directly 
within the logic of a radiation hardened FPGA such as the Actel RTAX series or the Xilinx Virtex-5QV or, 
alternatively, an ASIC.  With this approach, performance in excess of 300 GOPS (billion operations per second) is 
possible on a single FPGA device[2].  While several high-level tools exist that allow rapid modeling of these 
applications, the actual coding is typically done using a hardware description language such as VHDL (Very High 
Speed Integrated Circuit Hardware Description Language) or Verilog. 

In general, across all processing options, there is a trend where one can trade performance for application 
development complexity.  Current radiation hardened spaceflight processors are limited in performance, but offer a 
relatively simple application development process using common software programming languages and operating 
systems.  Radiation tolerant processors in redundant configuration offer higher performance and can use these tools 
and operating systems, but require added complexity to handle voting mismatches and resynchronization.  FPGA or 
ASIC based computing provides very high performance, but at the cost of a complex application development 
process using hardware description languages. 

A radiation hardened multicore processor is an attractive alternative to these approaches that could provide 
increased performance for future processing requirements and allow application development using standard 
software languages and tools.  With the emergence of commercial multicore architectures and radiation hardened 
integrated circuit design libraries, such a device is now feasible. 

Commercial industry adopted multicore processor architectures after it proved difficult to push operating 
frequencies above a few Gigahertz.  To circumvent this limitation, these processors use multiple cores operating at a 
lower frequency.  Multicore architectures should be viable well into the future as improvements in semiconductor 
fabrication technologies (reducing feature sizes) will allow an increasing number of processing cores to be 
implemented on a single device.  As a point of reference, the Tilera TilePro64 multicore processor offers a 
theoretical maximum of 384 GOPS[3] (billion operations per second).  However, multicore processors do present 
some challenges as developing software that can fully utilize the processing resources can be difficult.  There is, at 
present, a lack of parallelizing compiler support and tools that can optimally allocate threads across multiple 
processors.  Furthermore, the achieved processing performance can be very sensitive to memory locality as off-chip 
memory access can incur significant performance penalties. 

Figure 1. Robotic Spacecraft Architecture. 
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II. Classes of Multicore Applications 
Multicore processors are well suited for applications that allow the computation to be distributed among multiple 
processing nodes. We call out one category – general spacecraft computing – and three special application classes—
Short-Duration Real-Time Burst Calculations, High-throughput Science Data Processing, and Intensive Search-
Based Reasoning— that seem particularly amenable to future multicore processor-based spaceflight systems.  The 
latter three also seem well-suited for implementation via other processing technologies (e.g. FPGAs).  
Characteristics of these application classes are documented in Table 1. The following discussion identifies examples 
of spaceflight systems within each application class. 

 
Table 1.  Classes of computation for spaceflight multicore applications. 

Class of 
Application Mission Applications Objective of 

Computation Flight Computing Concept 

Short-Duration 
Real-Time Burst 
Calculations 

Science/Exploration: Entry, 
Descent & Landing, non-
cooperative Autonomous 
Rendezvous and Docking, real 
time reaction to internal or 
external science or 
engineering stimuli 

Achieve most robust 
results within available 
time constraints as 
input to control 
decisions 

High peak power needs; 
significant margin for 
remainder of mission; 
stringent fault tolerance and 
real-time requirements 

High-throughput 
Science Data 
Processing 

Science: High resolution 
sensors, e.g., Synthetic 
Aperture Radar (SAR), 
Hyperspectral 

Downlink images and 
products rather than 
raw data  

Distributed, dedicated 
processors at sensors; perhaps 
less stringent fault tolerance 

Intensive Search-
Based Reasoning 
(may be Non Real-
Time) 

Science/Exploration: Mission 
planning, fault management, 
model-based reasoning 

Accomplish 
opportunistic science; 
mitigate execution 
failures via contingency 
planning; detect, 
diagnose and recover 
from faults and 
unanticipated events 

Multicore may be needed to 
enable onboard capabilities 
due to computational demands 

General Spacecraft 
Computing 

Core spacecraft functionality: 
Telecom; file system; 
commanding and sequencing; 
attitude control; …  

All the functions 
required to run a 
spacecraft. 

Utilize the capacity offered by 
multicore; message-passing 
and partitioning to achieve 
fault containment regions.  
Redundancy in cores allows 
for fault recovery, multiple 
algorithms to achieve the same 
result. 

A. Short-Duration Real-Time Burst Calculations 
Gamma-ray bursts (GRBs) are intense flashes of gamma rays that occur several times daily and typically last for 

only a few seconds.  The Swift spacecraft is dedicated to the study of gamma-ray burst science and exemplifies a 
scenario that requires autonomous detection of, and real-time reaction to, external (or internal) stimuli. 

As illustrated in Fig. 2, Swift is comprised of three instruments, each operating in different wavelengths— the 
Burst Alert Telescope (BAT), the X-ray Telescope (XRT), and the Ultraviolet/Optical Telescope (UVOT).  Once the 
wide field-of-view detectors on BAT detect a GRB, the spacecraft must be repointed to align the other two narrower 
field-of-view telescopes with the event.  Short GRB durations and their unpredictable times of occurrence render a 
human-in-the-loop architecture ineffectual.  Instead, a high-throughput onboard data processing system determines 
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the location of the burst and autonomously reorients the 
spacecraft to bring the burst area into the XRT and UVOT 
fields-of-view[4]. 

Depicted in Fig. 2, entry, descent, and landing (EDL) is 
another autonomous spaceflight capability that requires 
significant burst processing capability.  Mission success hangs in 
the balance of a successful EDL sequence, and for destinations 
such as Mars, light-time delay forces the question of autonomy.  
Increasingly, EDL algorithms are vision-based algorithms that 
involve, e.g., identifying and tracking terrain features to avoid 
hazards and achieving pinpoint landing accuracy.  Future 
proximity operations concepts for primitive bodies missions also 
are expected to make heavy use of vision-based algorithms.  As 
a rule, these algorithms are computationally intensive and push 
beyond a general-purpose processor level of capability.  The 
Autonomous Landing and Hazard Avoidance Technology (ALHAT) project within the Exploration Technology 
Development and Demonstration Program (ETDDP) has benchmarked a set of Lidar-based algorithms for a lunar 
lander as requiring approximately two more orders of magnitude flight computing capacity than had been baselined.

Applications in the burst calculation class are typically mission-critical.  To the extent they are performing 
calculations within a limited timeframe as input to control decisions, they have the most stringent fault tolerance 
requirements. 

B. High-Throughput Science Data Processing 
Long-standing race conditions exist between capabilities for sensors and instruments to collect data and 

capabilities to efficiently communicate and meaningfully process that data.  The throughput of modern science 
instruments can be astounding. The HyspIRI (Hyperspectral Infrared Imager ) instrument is projected to collect 3.2 
terabytes per day while the DESDynI (Deformation, Ecosystem Structure, and Dynamics of Ice) synthetic aperture 
radar (SAR) instrument is projected to collect 4.9 terabytes per day, to cite just two examples.  Such high data 
throughput can challenge downlink capabilities even for Earth orbiters.  However, multicore offers the possibility to 
trade downlink capacity with onboard computing capacity; specifically, to generate appropriate onboard science data 
products (e.g., images, advance statistical summaries of raw data) with smaller data footprints that can fit within 
downlink limitations.  Figure 4 depicts a notional onboard processing flow for hyperspectral image data that could 

 
 
Figure 3. Entry, Descent, and Landing Concept of Operations. 

 
 
Figure 2. Swift Spacecraft. 
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be implemented via multicore 
computing.  Multicore support for 
this application class would likely 
involve decentralized, dedicated 
processing at the instrument, with 
less stringent fault tolerance 
requirements than for core 
spacecraft functions.  To 
summarize, multicore opens up the 
trade space to offer more flexibility 
in finding suitable system solutions 
among flight computing, science 
instrument data throughput, and 
downlink capabilities. 

C. Intensive Search-Based Reasoning 
Autonomous functions on future space missions can be expected to become more common and necessary, 

especially for deep space missions, as flight systems venture further into remote environments that are at least partly 
unknown.  Multicore flight computing will have a role to play to support certain onboard model-based, search-
intensive reasoning capabilities such as planning, scheduling and resource management, as well as fault 
management.  As an example, multicore can increase the very pace of a mission by improving the so-called 
thinking-to-driving ratio of Mars rovers.  Currently, for Spirit and Opportunity, that ratio has been approximately 
15:1.  In other words, during mobility periods, the Mars Exploration Rovers are “thinking” much more than they are 
moving.  With multicore, that ratio can approach 1:1, or ideally, the rover “thinks” while it moves.  Such onboard 
computing capacity has implications for science: processing navigation images for interesting science signatures 
while traversing; and for fault management: more frequent collection and processing of navigation images for 
hazards or fault conditions.  More generally, future flight systems will increasingly have need for fail-operational 
fault management, rather than traditional fail-safing, to grapple with challenging operational environments and/or 
severe mission duration constraints.  Multicore can support the implied computations.. 

D. General Spacecraft Computing 
This class of software currently comprises the majority of software on a spacecraft and includes functions such 

as telecom, resource and device control, attitude control, power switching, file system management, commanding 
and sequencing, and a myriad of other activities necessary to keeping a spacecraft operating.  In many instances, 
these activities are programmed as threads that communicate and coordinate through message passing interfaces, 
allowing them to function easily in a multicore system.  Among the non-real-time applications, we should expect 
several would share a given core.  But of special note are the real-time applications, such as attitude control, which 
require predictable, rate-group style organization with strict adherence to deadlines.  Elsewhere in this paper we 
refer to partitions that may be established within a multicore chip, and certainly a real-time partition is required if 
we are to host attitude control and similar applications on multicore.  Given a partition capability, including timely 
access to spacecraft sensors and actuators, and thus, a means to establish fault containment regions and memory 
partitions, real-time and non- real-time applications supplying the spacecraft’s core functionality should operate well 
in a multicore environment.. 

E. Multicore Application Considerations 
Software architectures used to instantiate specific applications will vary considerably.  How well the software 
architecture maps to the multicore architecture directly impacts how efficiently the application will be executed.  
The following questions are particularly relevant to the issue of efficiency. Some of these issues are addressed in the 
following discussion on multicore architectural features. 
 

1) Does the application require frequent and fast access to a large off-chip data volume or can the application 
largely be executed on-chip (in place)?   

2) How well can the application be parallelized? 
3) Are the processes distributed among the nodes largely independent or is significant inter-processor 

communication necessary? 

 
 
Figure 4. Hyperspectral Image Processing 
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4) Are these processes identical or heterogeneous? 
5) Does the application require a dynamic processing (e.g. tasks and memory allocation) model? 
6) How much processing latency is acceptable?  
7) Is floating-point processing necessary? 

III. Key Multicore Architectural Features 
Commercial multicore processor architectures are proliferating at a rapid pace.  Applications and processing 
paradigms drive architectures.  As the range of processing applications and requirements expands, so does the span 
of architectures. In space-based systems, as in any multiprocessing system, they key elements are: 
 

1) Processor core instruction set architecture (ISA) 
2) Heterogeneity vs. Homogeneity of cores 
3) Number of processor cores 
4) On-chip Inter-core communication network 
5) On-chip memory (cache) architecture, size, distribution and access method 
6) Off-chip memory architecture and interface 
7) Off-chip bus/network interconnect interface 

The specific characteristics of the above key elements will determine the applicability of the processor to real-
time systems, scientific parallel processing, large space searches, and model-based analytical processing. Similarly, 
the inherent robustness of the computer and suitability for application of different fault tolerance techniques is 
directly determined by these architectural features. 

Many currently popular, commercially available multicore processors comprise a small number (2 to 8) of cores 
based on previous generation unicore processors. The primary advantage of these types of machines is that they 
require minimal new development both in hardware and software, thus providing a rapid path to market and a 
familiar software suite at the cost of potential enhancements in efficiency and throughput that might be achieved 
using newer ISAs and interconnects more tailored to the multicore environment. Provision of a relatively 
straightforward entry path to multicore computing for both developers and users has given researchers time to begin 
the process of understanding the potential of multicore computing and to experiment with different approaches. 
While most of these multicore processors are built around general-purpose ISAs, there are also examples of Digital 
Signal Processors (DSPs) in this category. DSP ISAs and unicore architectures, having a long history of 
accommodating multiprocessing architectures such as parallel and systolic arrays, are more easily adapted to the 
multicore environment and highly efficient multicore DSPs are readily available. 

Current state of the art general-purpose multicore processors, such as the Tilera product line, offer many tens of 
processors with the latest generation machines providing up to 100 cores on a chip. In this case, a custom ISA was 
developed as well as custom on-chip interconnect. This level of customization enabled high efficiency for the target 
application area, (video processing) while standard off-chip memory and I/O interfaces allowed relatively 
straightforward board level product development.  As the family moves towards more general-purpose computing, 
changes in ISA, interconnect, and hardware support for previously software-implemented functions are required, 
and thus the family architecture is evolving.  Other computing system developers are making similar trades as they 
evolve their product lines to penetrate the growing range of applications and markets. 

As users are quickly finding out, the use of multicore machines for unintended applications results in significant, 
and often unacceptable, losses in efficiency.  We have recently experimented with a range of commercial multicore 
computers; porting a variety of operating systems and applications to these machines and measuring power 
efficiency and compute throughput and scalability while concurrently analyzing the architectures for fault tolerance 
capabilities and suitability for use in mission critical and extreme environment applications.  

As will be discussed in the following sections, space-based applications require additional unique features at the 
fundamental semiconductor and circuit technology levels, as well as, at the ISA and architectural levels. Designing 
multicore processors for space will entail unique architectural trades to accommodate a broad range of unique and 
general-purpose applications a well as high reliability in extremely challenging environments. 
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IV. Desired features of a spaceflight multicore processor 
NASA has been looking at multicore processors as a means to enable advanced mission capabilities and as a way 

of reducing the size, mass and power of the avionics systems. Currently, mission designers must deploy federated 
computing systems to provide the sufficient computational power and fault detection, isolation, and recovery (FDIR) 
functions. Using this approach with standalone processors has significant negative impacts to system complexity, 
size, weight, and power (SWaP) and increases overall mission cost. Multicore systems have the potential to 
consolidate computing functions, reduce the number of special purpose FPGAs and maintain fault FDIR 
functionality, all while dramatically improving computational performance for next generation capabilities. 

During an early phase of the Altair crewed Lunar Lander development, the development team investigated 
deploying a fault tolerant multicore processing architecture. By using the high performance computing capabilities 
for general automation, vision processing, landing hazard avoidance, Automated Rendezvous and Docking 
(AR&D), as well as normal Guidance Navigation & Control (GN&C) and Command & Data Handling (C&DH) 
functions, the team was able to reduce significantly the overall SWaP and provide for future commonality with other 
systems within the Constellation program. And while this study focused on a crewed mission, these benefits would 
apply equally to robotic space missions.  Currently, several vision based autonomous landing systems providing 
pinpoint landing, hazard recognition and avoidance, and real time navigation based on terrain analysis are under 
development for both human and robotic missions. In addition, there are multiple efforts under way aimed at 
developing autonomous science capabilities and autonomous onboard mission planners for robotic missions based 
on multicore processor architectures. Using these projects as a basis, the following general features have been 
defined to be highly desirable in future general-purpose multicore computers. It should be noted that the following 
paragraphs relate to general-purpose computing solutions, not digital signal processors or other types of specialized 

computing architectures, and that the perspective of the authors is to provide guidance to computing system 
developers utilizing current or emerging technologies for products to be fielded in the next few (3-6) years.  Figure 5 
depicts a notional multicore computer system at the board, multicore processor device, and processor core levels.  
The following discussion explores the desired feature set by type of feature (e.g., performance, fault tolerance) 
architectural allocation (e.g. processor, memory, I/O), and level of implementation (e.g., processor, system). 

A. General Performance 
While onboard processing performance requirements can vary substantially from mission to mission, the desired 
features described below would accommodate most foreseeable applications. 

 
 

Figure 5. Notional Multicore Computing System. 
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1) Processing Throughput 

The processor should be capable of providing at least 40GOPS and 20GFLOPS (billion floating-point 
operations per second) throughput to support these highly compute-intensive real time applications. While 
computing platforms of lesser capability will be of interest to some missions, this high level of computational 
capacity will provide the most generically useful, cross-mission capability. The computing system design 
should provide sufficient memory and I/O bandwidth to support this throughput capability. 
 
2) Power Management 

The processor should be capable of scaling its power and energy consumption with required throughput. For 
many applications, the required throughput will vary dramatically throughout the mission either due to pre-
planned mission phasing or because of unexpected events that require immediate response, e.g., real time 
execution of a model based mission planner due to discovery of a science opportunity or potentially mission 
threatening hazard. Two modes of power/performance scaling should be made available: clock control and core 
power up and down. To accommodate real-time events, these mechanisms should respond rapidly, i.e, on the 
order of microseconds to milliseconds, not seconds. To provide maximum utility in extremely energy 
constrained missions, the adjustability should be fine grained (i.e., at the level of individual cores and a few 
megahertz clock rates).   Typical spacecraft processors nominally dissipate approximately 5 watts while 
spacecraft computers will typically dissipate approximately 10 to 15 watts maximum. While somewhat higher 
power levels are acceptable for some earth orbiting missions, deep space missions are extremely power 
constrained and expected to become more so in many future missions. Thus, in addition to power scaling as 
discussed above, the processor design should provide a generally useful operating configuration (at least 1GOP, 
external memory interface and one high speed external I/O) for not more than 5 watts.  

 
3) Processor Core Implementation 

The system should, in general, be homogeneous in nature, with the possible exception of cores controlling off-
chip I/O. Processor cores should all implement the same instruction set. This provides ease of programming, 
fault tolerance, and space qualification. While custom heterogeneous architectures can provide significantly 
higher efficiency, the specific application must be very well known and ubiquitous to justify special purpose 
heterogeneous designs. In the longer term, heterogeneous architectures may become advantageous, but at 
present this does not seem a winning strategy.  
 
4) Internal Interfaces 

It is extremely difficult, at this point, to define the optimum architectural tuning point of processing core 
throughput, memory capacity per core, inter-core network speed or topology, on or off-chip memory, and I/O 
bandwidth. The optimum architecture will vary dramatically with application. The driving requirement at this 
time is to enable support of a broad range of applications, and thus, a broad range of architectural tuning points 
within a given processor and computing system design. In the future, benchmark applications will need to be 
developed to accurately assess the adequacy of specific architectures against anticipated mission needs. At 
present, we can, however, state that each processor core should have sufficient local memory, implemented as 
either local memory or cache, to ensure that the need to access off-board memory for both typical spacecraft 
applications and for scientific parallel computations (such as are typically performed by cluster computers for 
ground base science data analysis) is minimized. Similarly, the inter-core interconnect should be sufficiently 
fast that the need to access off-board memory or I/O does not unduly delay processing in worst case real time 
scenarios, which might include multiple cores re-loading local memories with new instructions and data. 
Additionally, we anticipate increasing inter-core message traffic among computations spread over the chip 
which need to be supported by the interconnect.  We expect message-passing to become increasingly important 
compared to shared memory for general-purpose programs for fault containment reasons as well as simplicity.  
Strategies such as network partitioning to minimize contention and collisions may be beneficial in some 
architectures. Use of emerging technologies such as through-silicon-vias and chip stacking may provide 
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considerable flexibility in both local core memory capacities and core interconnect topologies. By similar 
reasoning, it would seem that provision of multiple memory ports and multiple high speed I/Os distributed 
about the multicore processor chip would provide the best overall throughput and the highest probability of 
being able to achieve a balance of processor throughput, memory bandwidth, and I/O for a broad range of 
applications. 

 
5) External Interfaces 

As described above, the processor should provide high speed I/O, but it is difficult at this time to specify 
optimum or prioritized I/O protocols. At the computer system level, however, it is clear that multiple 10Gb/s 
interfaces, compatible with standard spacecraft and commercial standards, should be provided. The current 
standards such as 1553B, SpaceWire, and TTGbE (Time Triggered Gigabit Ethernet) will not be sufficient to 
support future spacecraft requirements, so that while they must be accommodated by some means, a next 
generation protocol at the 10Gb/s level is needed and the computer design should accommodate easy addition of 
new interface standards as they become available. 
 
6) Time Management 

Distribution of “system time” is also a hard requirement for space-based computing systems, both for fault 
tolerance and for normal operation. To accommodate this requirement, the processor should provide a low 
latency, deterministic mechanism for distributing system time across the array of processor cores and provide an 
external interface to synchronize with other local computing systems. 

B. General Reliability 
The system needs to be fundamentally reliable for long missions. Typical missions can last 10 years or longer, 

and some missions have lifetimes of 30 years or more. The processor chip and the computer system must provide 
long life time and high reliability in the space environment. Typical mission environments include low earth orbit, 
geosynchronous orbit, the lunar and Martian surfaces, and deep interplanetary space.  Due to the long life 
requirements, device packaging, board designs, and packaging implementations, and semiconductor component 
design and quality are critical. 

 
1) Packaging 

Spaceflight electronics packaging requirements are far more demanding than those for most commercial off-
the-shelf devices.  The packaging must first be able to withstand mechanical stresses during launch, which can 
generally be handled by good mechanical design.  Once on orbit, the thermal environment of space demands 
that packaging withstand wider temperature extremes and frequent thermal cycles throughout a mission, as well 
as, provide adequate thermal dissipation in vacuum.  Even prior to launch, electronics packaging must also 
allow detailed inspections during board-level assembly.  For large integrated circuits, such as microprocessors, 
these requirements typically are addressed by using hermetically sealed ceramic column grid array packages. 
 
2) Thermal 

While typical ambient or cold plate temperatures are normally within the 0O to 40OC range, due to the difficulty 
of establishing good thermal paths, junction temperatures can reach well over 100 OC. However, cases also exist 
(i.e. after start up) where a computer must operate near 0OC.  Component and board level designs must 
accommodate these wide temperature variations. 

 
3) Ionizing Radiation 

The ionizing radiation environment can vary dramatically from mission to mission and can even be highly 
variable within a single mission.  To operate reliably in their intended environment, spaceflight electronics must 
mitigate both the long term and transient effects of this radiation.  Long term effects result from total ionizing 
dose (TID), which can cause threshold shifts and increases in leakage current.  With the possible exception of 
the Jovian system, the Van Allen Belts and a few other special cases, total ionizing dose has not been a 
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significant issue.  However, transient single event effects (SEE) can manifest in many ways and can be a major 
contributor to the unreliability of space computing systems.  Single Event Latchup (SEL) is a potentially 
destructive high current state and, in general, all spaceflight electronics must have immunity to this.  Other 
SEEs include Single Event Upset (SEU), Single Event Transient (SET), and Single Event Functional Interrupt 
(SEFI), which are non-destructive but can cause either data errors or operational interruptions.  Depending on 
the criticality of the application, a spaceflight computer must also be either prevent or mitigate these effects.  
While a variety of fault tolerance approaches have been developed to handle these errors, the components 
themselves should provide high levels of radiation tolerance thereby minimizing reliance on fault tolerance 
techniques. 

 
4) Part Qualification 

The system level reliability of spaceflight missions is significantly determined by the reliability of the 
individual electronic parts.  To ensure the high reliability of these parts, qualification programs are required to 
ensure that the parts are fabricated, assembled, and tested in a controlled manner.  These qualification steps call 
for extensive lot-level testing and inspection steps that go well beyond the standard practice for commercial 
fabrication processes. 

C. Fault Isolation and Recovery 
While reliability is preferable to an over-reliance on fault tolerance, the reality is that no component or system is 

immune to fault induced errors. Highly reliable systems must implement at least some fault tolerance. The fault 
tolerance measures should, therefore, be inherent in the design of both the processor and the computer system, while 
imposing minimal overhead in throughput, mass, power, and volume. It is our experience that, if fault tolerance is 
built into the system from the processor and components through the system level, it is possible to achieve high 
efficiency levels.  But it is also our experience that the converse is true:  if fault tolerance is not designed in at the 
outset, it will be impossible to achieve highly efficient, high coverage fault detection, isolation, location, and 
recovery.  

One of the most important desired features is the ability to hardware partition functions from one another on 
different cores. This applies to all of the use cases discussed in section II.  With the support of super/hypervisor level 
software, hardware partitioning would allow individual cores to be reloaded, restarted, crash, and contain software 
errors all without affecting other cores. Mixing science data processing software from different vendors or even 
loading critical Guidance Navigation & Control software into an adjacent low criticality science processing core 
would be possible and certifiable. This partitioning allows the software system composability (separation of 
concerns) benefit of a federated system to be retained while still meeting future mission needs for high performance 
and lower SWaP avionics.  Without the ability to run-time partition cores and system resources, a multicore 
processer may become just a niche product and not be generally applicable to a wide range of missions. 

The processor chip should be designed with fault tolerance of the processor cores and external I/O in mind. This 
can be done in various ways, but it should be done power efficiently and with minimal operational overhead.  At a 
minimum, the following issues should be considered in developing a fault tolerant machine. 

 
1) Error Detection and Correction 

Basic fault tolerance mechanisms such as error detection and correction codes should be provided at the 
processor level, i.e., at the internal chip interconnect and on-chip memories. 
 
2) Memory Partitioning 

The system should optionally provide the capability to partition memory and I/O such that it is not possible for 
a core to corrupt memory or I/O that it does not “own”. The processor internally, and the computer at the system 
level, must be able to guarantee this partitioning in the presence of faults. However, there may also be special 
cases where a set of processors may need to share local memory to optimize performance. 
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3) Scrubbing 

The processor and the system should provide some means of detecting and scrubbing latent faults or errors to 
preclude a buildup of undetected errors that could result in system failure due to an accumulation of errors 
beyond the ability of the built in fault tolerance to handle.  

 
4) Core-to-Core Communication 

The processor should be capable of fault tolerantly and efficiently enforcing a message passing interconnect 
paradigm. If it were possible to achieve high efficiency in a purely message passing interconnect, this would be 
preferred, but it is not clear that this is the case, especially for certain applications that naturally map well into a 
shared memory computing model. Thus, a general-purpose processor, in the near term, should provide both 
modes of communication but be able to guarantee message passing only (i.e., that a processing core cannot, 
even under fault conditions, write into another processor’s memory area) within specified regions of the core 
array. Similarly, this mechanism should also be extended to external memory and I/O. 

 
5) Internal Redundancy 

It is often desirable (or necessary) to implement a multiply redundant fault tolerance scheme such as triple 
modular redundancy. To support these fault tolerance modes, the processor should provide the ability to tightly 
synchronize processing cores.  

 
6) External Synchronization 

It will, for some applications, be necessary to implement redundancy at the system level. Synchronization to an 
external timing source is therefore also desired at least at the processor level. 

 
7) Redundant I/O 

Fault tolerance at the spacecraft level requires the spacecraft computer to provide multiply redundant I/O ports. 
This is at least a computer system level requirement, but depending on architecture, may be required at the 
processor level as well. 

 
8) External Memory 

The computer memory system will require error detection and correction of computer memories. Toleration of 
whole memory chip failures and multiple bit errors is needed as well. 

V. Software Considerations 
The efficient and cost-effective development of the software that is to run future multicore systems requires 

tools.  Of course, we still need the usual compiler-linker-loader with standard binary formats for the hardware 
architecture at hand.  But with multicore, we have the additional issue of distributing the programs to the cores that 
will use them – a possible wrinkle in the loader part of the problem, or possibly addressed through some other 
facility that communicates with the cores.  But whatever the solution, the programmer expects that getting the 
program into the correct memory cells and moving the code from one core to another will be done handled by 
functions supplied with the system.  We also note that other tools that have become standard, such as language-
sensitive editors and platform-aware debuggers, are also expected.  These are the minimum. 

In particular, the job to be done by debuggers is more complex, and more necessary, than has previously been 
the case.  Simply stated, multicore makes possible more paths through a given collection of code than equivalent 
code run on a single-core, multi-tasking system. One reason is because task priorities in a single-core system often 
constrain the order in which a given set of tasks will be allowed to run, while with multicore, priorities among tasks 
hold only within a single processor.  So, if two tasks happen to be running on separate cores, they may interact and 
their executions interleave in ways unanticipated by the programmer. 

Most debugging takes place in a sequential environment.  This means that the programmer wants to control, in a 
repeatable way, the order in which cores as well as tasks will run.  The programmer will want to run, and re-run, the 
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same sequence of execution over and over again, to discover his bug.  Debuggers are a proven time-saving tool, and 
in multicore, the situation is certainly no less complex. 

Another important tool for code testing is simulation.  Multicore simulators, both binary compatible and not, 
have their costs and uses.  But a simulator is essential and is especially useful if it is capable (for the task at hand) of 
sufficiently accurate performance prediction.  More and more, programmers and projects employ simulation for 
testing code and for testing entire systems.  The cost of simulation is much lower than the cost of testing on actual 
hardware and has become an expectation of developers and managers alike. 

Our real challenge is applications with a real-time component.  Of course, a real-time operating system is 
essential, and with libraries for: 

 
1) Communication Among Cores, On and Off Board 
2) Interrupt Handlers 
3) Memory Allocation (in a distributed environment) 
4) Device Driver Frameworks 
5) Time and Timers 
6) File System Framework 
7) Logging Support 

 This list not meant to be exhaustive and is, in many respects, no different than such a list for a single-core 
system.  Additional elements, depending on hardware architecture, are support for on-chip communication networks 
and associated communication protocols.  And of course, the test of a real-time system is performance: do the tasks 
meet their deadlines?  To answer this question, performance measurement tools will be required. 

Finally, standard tools and platforms, such as Eclipse, allow additional tools, languages, and compilers, and all 
manner of extensions to tools within an interface known to many suppliers.  In fact, not adhering to or not utilizing 
standards where they exist is a negative in the world of software and of computers in general. 

VI. Long Term Impact of Multicore Processors to Future Missions 
In the longer term, provision of high performance multicore based computers onboard spacecraft, as discussed in 

section II, will revolutionize robotic (and eventually crewed) space missions. As with terrestrial robotic systems, 
providing a space robotic system with intelligent autonomy allows the robot to carry out missions on its own with 
minimal direction from humans. Thus, it can react in a timely manner to unexpected events, integrating goal directed 
mission planning with situational awareness to quickly determine a course of action without terrestrial intervention. 
Not only is this capability greatly enhancing of certain missions, improving spacecraft reliability and robustness, 
hence, science and exploration return, but it is also enabling of whole classes of missions in which it is impractical 
or impossible to engage human intelligence in time to direct the mission. 

Multicore computing will also shift the paradigm for how science information is provided by spacecraft assets.  
With the availability of increased onboard processing capabilities, future mission concepts can evolve where higher 
level science data products are returned to earth instead of compressed sensor data, and science of opportunity is 
pursued as the situation is warranted. 

How multicore computing will ultimately be embedded in the spacecraft bus and in the payload is yet to be 
determined. The computing architectures and paradigms that will emerge over the next 20 years are similarly 
unknown and will evolve, probably in several directions simultaneously. What is clear, however, is that this is an 
exciting time for mission designers, scientists, space explorers, and spacecraft system and computer engineers. For 
the first time in decades, robotic spacecraft will have computing capabilities similar to those enjoyed by terrestrial 
systems. How creative we are in developing the form of those computing systems and how we put them to use, will 
determine the extent of the science and exploration we can do in the next 20 years. 

VII. Conclusion 
Multicore computing offers a significant advance in capabilities over the current state of the art for onboard 

processing.  Several potential application classes have been identified for multicore computing including; (a) high 
throughput science data processing, (b) short duration real-time burst calculations, (c) intensive search-based 
reasoning, and (d) general-purpose computing.  Several multicore architectural features can influence how well a 
processor will perform for a given application.  However, this paper has identified sets of desired features (general 
performance, general reliability, and fault isolation and recovery) for a spaceflight multicorer processor that would 
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be broadly applicable for future NASA onboard processing applications.  Beyond these features of the multicore 
processing device and computer, software tools were identified that will be necessary for application development.  
With these features and software tools, onboard multicore processing can enable autonomy and advanced science 
data processing that can lead to entirely new classes of robotic space missions. 
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